
Version 3.1, for submission to Physics Letters B

Strange anti-particle to particle ratios at mid-rapidity in√
s
NN

= 130 GeV Au+Au Collisions

J. Adams,3 C. Adler,11 Z. Ahammed,23 C. Allgower,12 J. Amonett,14 B.D. Anderson,14 M. Anderson,5

G.S. Averichev,9 J. Balewski,12 O. Barannikova,23, 9 L.S. Barnby,14, ∗ J. Baudot,13 S. Bekele,20 V.V. Belaga,9

R. Bellwied,31 J. Berger,11 H. Bichsel,30 A. Billmeier,31 L.C. Bland,2 C.O. Blyth,3 B.E. Bonner,24 A. Boucham,26

A. Brandin,18 A. Bravar,2 R.V. Cadman,1 H. Caines,33 M. Calderón de la Barca Sánchez,2 A. Cardenas,23

J. Carroll,15 J. Castillo,15 M. Castro,31 D. Cebra,5 P. Chaloupka,20 S. Chattopadhyay,31 Y. Chen,6

S.P. Chernenko,9 M. Cherney,8 A. Chikanian,33 B. Choi,28 W. Christie,2 J.P. Coffin,13 T.M. Cormier,31

M.M. Corral,16 J.G. Cramer,30 H.J. Crawford,4 W.S. Deng,14 A.A. Derevschikov,22 L. Didenko,2 T. Dietel,11

J.E. Draper,5 V.B. Dunin,9 J.C. Dunlop,33 V. Eckardt,16 L.G. Efimov,9 V. Emelianov,18 J. Engelage,4 G. Eppley,24

B. Erazmus,26 P. Fachini,2 V. Faine,2 J. Faivre,13 R. Fatemi,12 K. Filimonov,15 E. Finch,33 Y. Fisyak,2 D. Flierl,11

K.J. Foley,2 J. Fu,15, 32 C.A. Gagliardi,27 N. Gagunashvili,9 J. Gans,33 L. Gaudichet,26 M. Germain,13 F. Geurts,24

V. Ghazikhanian,6 O. Grachov,31 V. Grigoriev,18 M. Guedon,13 S.M. Guertin,6 E. Gushin,18 T.J. Hallman,2

D. Hardtke,15 J.W. Harris,33 T.W. Henry,27 S. Heppelmann,21 T. Herston,23 B. Hippolyte,13 A. Hirsch,23

E. Hjort,15 G.W. Hoffmann,28 M. Horsley,33 H.Z. Huang,6 T.J. Humanic,20 G. Igo,6 A. Ishihara,28 Yu.I. Ivanshin,10

P. Jacobs,15 W.W. Jacobs,12 M. Janik,29 I. Johnson,15 P.G. Jones,3 E.G. Judd,4 M. Kaneta,15 M. Kaplan,7

D. Keane,14 J. Kiryluk,6 A. Kisiel,29 J. Klay,15 S.R. Klein,15 A. Klyachko,12 T. Kollegger,11 A.S. Konstantinov,22

M. Kopytine,14 L. Kotchenda,18 A.D. Kovalenko,9 M. Kramer,19 P. Kravtsov,18 K. Krueger,1 C. Kuhn,13

A.I. Kulikov,9 G.J. Kunde,33 C.L. Kunz,7 R.Kh. Kutuev,10 A.A. Kuznetsov,9 M.A.C. Lamont,3 J.M. Landgraf,2

S. Lange,11 C.P. Lansdell,28 B. Lasiuk,33 F. Laue,2 J. Lauret,2 A. Lebedev,2 R. Lednický,9 V.M. Leontiev,22
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Values of the ratios in the mid-rapidity yields of Λ/Λ = 0.71± 0.01(stat.)± 0.04(sys.), Ξ
+

/Ξ−=

0.83 ± 0.04(stat.) ± 0.05(sys.), Ω
+

/Ω−= 0.95 ± 0.15(stat.) ± 0.05(sys.) and K+/K−= 1.092 ±
0.023(combined) were obtained in central

√
sNN = 130 GeV Au+Au collisions using the STAR

detector. The ratios indicate that a fraction of the net-baryon number from the initial system is
present in the excess of hyperons over anti-hyperons at mid-rapidity. The trend in the progression
of the baryon ratios, with increasing strange quark content, is similar to that observed in heavy-ion
collisions at lower energies. The value of these ratios may be related to the charged kaon ratio in
the framework of simple quark-counting and thermal models.

PACS numbers: 25.75.Dw
Keywords: relativistic heavy-ion collisions; anti-baryon to baryon ratios; baryochemical potential;
strangeness; STAR

The goal of the experimental program at the Relativis-
tic Heavy Ion Collider (RHIC) is to study new states
of nuclear matter which have been predicted to form in
heavy-ion collisions [1]. A previous series of experiments
at lower energy, designed for a similar purpose, provided
several interesting results [2–10]. Measurements of anti-
particle to particle ratios in these collisions give informa-
tion on the net baryon density or baryochemical potential
achieved [11] and are thus of interest in characterizing the
environment created in these collisions. It has also been
suggested that the measurement of strange anti-baryon
to baryon ratios could help distinguish between a hadron
gas and a deconfined plasma of quarks and gluons [12].
The dominant production mechanism for anti-quarks is
via gluon fusion [13, 14] and a measurement of the anti-
baryon to baryon ratio therefore probes the gluonic de-
grees of freedom. The relations between the various anti-
particle to particle ratios allow for the test of a non-linear

∗Electronic address: lbarnby@bnl.gov
†URL: www.star.bnl.gov

quark coalescence model [15, 16] which is consistent with
the existence of quark degrees of freedom.

The Solenoidal Tracker at RHIC (STAR) detector sys-
tem [17], in the configuration used to collect the data
presented here, consisted principally of a large cylindri-
cal Time Projection Chamber (TPC) used for charged
particle tracking. The TPC has inner and outer radii of
50 cm and 200 cm respectively, a total length of approx-
imately 420 cm and was operated in a 0.25 Tesla mag-
netic field. It is surrounded by a cylinder of scintillator
slats forming a Central Trigger Barrel (CTB), a fast de-
tector providing a signal proportional to the multiplicity
within pseudo-rapidity ±1. Two Zero Degree Calorime-
ters (ZDCs) were used to detect spectator neutrons from
the colliding ions at close to beam rapidities [18]. Colli-
sions were triggered by requiring coincident signals in the
ZDCs which formed a minimum bias trigger. Approxi-
mately 250,000 of these events were used in the analysis.
An enriched central data sample was acquired, with the
additional requirement of a high CTB threshold, corre-
sponding approximately to the 14% most central events.
On these events a further centrality selection was made
off-line, by cutting on the observed track multiplicity in
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the TPC after event reconstruction. This analysis used
approximately 180,000 central √sNN = 130 GeV Au+Au
events after the multiplicity cut, corresponding to the
most central 11% of the total hadronic cross-section [19].

Two techniques were used to extract the raw yields
of strange particles. First, charged kaons were identified
via their specific ionization, or energy loss (dE/dx), in
the TPC. Second, these and other strange particles were
reconstructed from their decay topology.

Up to 45 ionization samples were measured for each
track. The dE/dx resolution was measured to be 11% fol-
lowing the procedure of [20]. For the charged kaon dE/dx
analysis only tracks below a momentum of 0.6 GeV/c
were used, where the dE/dx of kaons is distinct from
those of other particle species. In addition, tracks were
required to originate from the primary interaction ver-
tex within 3 cm. Similar to [21], the distribution of
Z = log[(dE/dx)Meas/(dE/dx)BB ], where (dE/dx)BB is
the dE/dx from a Bethe-Bloch parameterization, is fit-
ted with a convolution of Gaussian functions. The kaon
raw yields were extracted from the fit results for each pT

bin within rapidity |y| < 0.4.
The most versatile technique for the reconstruction of

strange particles is via their decay topologies [22]. The
decay Λ → pπ− (64% branching ratio)and the charge
conjugate decay for Λ result in two charged particles
in the final state. The Λ particles from the electro-
magnetic decay of the Σ0 are included in the Λ sam-
ple since they were not experimentally distinguishable
from the primary Λ population. The momenta of these
charged daughter particles are calculated from their tra-
jectories in the TPC. Both tracks can be extrapolated
back toward the primary interaction vertex to locate their
common point of origin, where the kinematic proper-
ties of the parent can be calculated. In this process,
all pairs of positively and negatively charged tracks in
an event are considered. To reduce the large combina-
torial background which results from random crossings
of tracks interior to the TPC fiducial volume, additional
cuts must be made. The most important criteria for im-
proving the signal to noise ratio are that the decay vertex
is well separated from the primary interaction and that
the parent originates from the primary interaction vertex
while the daughters do not. An additional requirement
that the dE/dx of the daughters is compatible with the
expected decay mode is also applied. For example the
positively charged daughter of a Λ should have a dE/dx
compatible with it being a proton. This technique is ex-
tended to enable the reconstruction of the Ξ− → Λπ−

and Ω− → ΛK− decays (100% and 68% branching ratios
respectively) and their charge conjugate Ξ

+
and Ω

+
de-

cays. Here, only Λ (or Λ) candidates within ±7 MeV/c2

of the expected mass [23] are used and the requirement
that the Λ (or Λ) originates from the primary interaction
vertex is relaxed. The resulting invariant mass distribu-
tions for Λ, Ξ− and Ω−, with their anti-particle distribu-
tions superimposed, are shown in Figure 1. The remain-
ing background under the peak in each invariant mass
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FIG. 1: Invariant mass distributions for pπ− and pπ+ (top
panel), Λπ− and Λπ+ (middle panel) and ΛK− and ΛK+

(lower panel).

distribution was subtracted by using a linear interpola-
tion between the background regions a few MeV/c2 on
either side of the peak region.

Charged kaons can also be reconstructed using a varia-
tion on this topological technique via their one-prong de-
cay channels. The most prominent of these are K → µν
and K → ππ0, with 64% and 21% branching ratios, re-
spectively. In this “kink” method the tracks from the
charged kaon and charged daughter particle are used to
reconstruct the kinematics of the decay. In order that
both parent and daughter are reconstructed in the TPC
with good momentum resolution, the fiducial volume for
the location of the decay vertex is restricted to radii of
130− 180 cm. The background comes from charged pion
decays, multiple scattering and hadronic interactions in
the TPC gas and combinatorics. The pion decay contri-
bution can be largely eliminated by a cut on the opening
angle between the parent and daughter tracks. This an-
gle, for a given momentum, is much smaller for a pion
decay than a kaon decay. The remaining background
level was estimated to be approximately 15% [24]. The
method allows charged kaons to be identified over a wide
range in pT .

The central assumption in forming the anti-particle to
particle ratios is that the detector response is symmet-
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ric with respect to charge and therefore no corrections
to the yields for the reconstruction efficiency or detector
acceptance are required. However, losses due to the ab-
sorption of anti-protons in the detector material have the
potential to modify the Λ/Λ, Ξ

+
/Ξ− and Ω

+
/Ω− ratios

and feed-down from the decay of heavier strange baryons
can modify both the Λ/Λ and Ξ

+
/Ξ− ratios. Absorp-

tion causes the final state anti-proton from Λ decay to
fail to be reconstructed more often than the proton from
Λ decay. The size of this effect has been estimated and
corrected for using a GEANT simulation of the detec-
tor. Absorption reduces the apparent Λ/Λ and Ξ

+
/Ξ−

ratios by 1% and 0.2% respectively. The decaying anti-
particles also have a larger absorption cross-section than
their corresponding particles, but since they decay within
a few centimeters, before most of the absorbing materials
have been traversed, this correction is even smaller and
is implicitly included in the numbers given above. The
observed Λ/Λ includes feed-down contributions. The to-
tal Λ yield contains Λ originating from Ξ−, Ξ0 and Ω−
decays, estimated to be 27± 6% [25]. Their anti-particle
decays similarly contribute to Λ. Assuming that these
feed-down contributions to Λ and Λ are in the ratio of
the Ξ

+
/Ξ− measurement, we obtain an actual Λ/Λ ra-

tio, which we quote, 0.04− 0.06 lower than the observed
value. The only feed-down contribution to the Ξ

+
/Ξ−

comes from the Ω− → Ξ−π0 channel with a 9% branch-
ing ratio and was therefore neglected. Two processes
modify the K+/K− ratio. Feed-down of kaons from the
decay φ → K+K− was estimated, using the measured
φ/K ratio [26, 27], to reduce the apparent K+/K− ratio
by 0.8% at pT = 0.4 GeV/c and less than 0.3% above
pT = 1 GeV/c. Secondary interactions were studied us-
ing GEANT simulations of HIJING [28] events and were
found to increase the measured ratio by 0.7%. These
corrections were applied in producing the final ratio.

After the absorption and feed-down corrections, the
value of the Λ/Λ ratio is 0.71 ± 0.01(stat.) in the mea-
sured acceptance interval of pT > 0.4 GeV/c and within
one unit of rapidity centered at mid-rapidity. The Ξ

+
/Ξ−

ratio after correction is 0.83± 0.04(stat.), measured over
the same rapidity interval and pT > 0.5 GeV/c. In order
to admit a larger sample of Ω− and Ω

+
, the Ω

+
/Ω− ra-

tio was calculated using a larger interval, of ±1 units of
rapidity, and a value of 0.95 ± 0.15(stat.) was obtained.
The Λ/Λ and Ξ

+
/Ξ− ratios as a function of pT out to

2.5 GeV/c and 3.5 GeV/c are shown in Figure 2 and are
consistent with a constant value. Within statistics the
Λ/Λ ratio appears to be independent of the charged par-
ticle yield at mid-rapidity. Systematic uncertainties on
the Λ/Λ and Ξ

+
/Ξ− of 0.04 and 0.05 respectively have

been estimated by varying the cuts used to identify de-
cay candidates. There were insufficient data to estimate
the systematic uncertainty on the Ω

+
/Ω− this way so the

Ξ
+
/Ξ− systematic uncertainty was used since the recon-

struction methods are identical. The K+/K− ratio is
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FIG. 2: The ratios Λ/Λ, K+/K− and Ξ
+

/Ξ− as a function
of pT . The error bars indicate the statistical errors and the
brackets the systematic uncertainties, except in the case of the
K+/K− points which have error bars indicating the combined
error for pT < 0.6 GeV/c.

1.075±0.008(stat.), measured via the dE/dx method, in
the range 0.15 < pT < 0.6 GeV/c and ±0.4 units of ra-
pidity around mid-rapidity. The same ratio measured by
the kink method is 1.13±0.015(stat.) and extends out to
2 GeV/c in pT . The systematic error of the kink measure-
ment due to detector effects is estimated to be 0.05 and
that for the dE/dx is estimated at 0.03. The small dis-
crepancy in the K+/K− from the two methods is within
the estimated systematic errors and a combined value of
1.092±0.023 was calculated, following the method of the
PDG [23] when combining results from different experi-
ments. As Figure 2 shows, with both methods, the ratio
shows no significant deviation from a constant as a func-
tion of pT . As all the pT intervals cover a large fraction
of the total yield (over 70% [25, 27, 29]) we assume that
the ratios we measure are a good indication of the ratios
in the integrated yields.

The strange anti-baryon to baryon ratios are plotted
in Figure 3 together with their values found in central
Pb+Pb collisions at √sNN = 17 GeV [30] at the CERN
Super Proton Synchrotron. Also shown are the p/p ratios
from STAR [21] and two measurements at the lower en-
ergy from NA44 [31] and NA49 [32]. Figure 3 shows that
the ratios increase with increasing strangeness content of
the baryon at both√sNN = 17 GeV and√sNN = 130 GeV.
The increasing trend in the ratios may be explained in a
simple quark coalescence model [15, 16], which predicts
that the anti-baryon to baryon ratios should be related
to one another by a common multiplicative factor. The
multiplicative factor is given by the value of the K+/K−

ratio. This is in approximate agreement with the data
presented here, as shown in Table I.

Within the coalescence model hadrons are formed from
a system of independent quarks and anti-quarks. An al-
ternative description of particle production which nev-
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FIG. 3: Anti-baryon to baryon ratios measured by STAR, for
baryons of increasing strangeness content, compared to values
obtained in experiments [30–35] at the SPS. For STAR points
the bars indicate the statistical uncertainties and the brackets
the additional systematic errors.

TABLE I: K+/K− ratio compared to compound ratios hav-
ing the same net quark content. Comparisons made for this
experiment and experiments at SPS [30–35].

STAR SPS

K+/K− 1.092± 0.023 1.76± 0.06

Λ/Λ

p/p
0.98± 0.09 2.07± 0.21

Ξ
+

/Ξ−

Λ/Λ
1.17± 0.11 1.78± 0.15

Ω
+

/Ω−

Ξ
+

/Ξ−
1.14± 0.21 1.42± 0.22

ertheless gives equivalent predictions for the ratios dis-
cussed here is the statistical model approach [36], which
does not distinguish between quark or hadron degrees
of freedom. In this case the multiplicative factor is
exp(2µB/3T − 2µs/T ), where µB is the baryon chemical
potential, µs is the strange quark chemical potential and
T is the chemical freeze-out temperature. The K+/K−

ratio can therefore be interpreted as an indirect measure
of the baryon chemical potential. If the central region in
Au+Au collisions at √sNN = 130 GeV were net baryon
free (µB = 0), then the K+/K− ratio would be equal to
one, and in both models the anti-baryon to baryon ratios

would also be equal to one, under the assumption that
strangeness is locally conserved. However, while the anti-
baryon to baryon ratios at this higher energy are closer
to unity, reflecting a lower net-baryon density, this den-
sity is nevertheless still positive. This is thought to be
a consequence of baryon number transport (or stopping)
during the collision process. There is an excess of u and
d quarks over their anti-quarks favoring the production
of baryons over anti-baryons and K+ over K−. We find,
from a fit to all the ratios, that µB/T = 0.18 ± 0.03
and µs/T = 0.001 ± 0.011 with χ2/dof = 2.5 when
including all the systematic errors. The same fit us-
ing averaged RHIC data [37–40] yields consistent re-
sults. A statistical model analysis using preliminary
data [41] is also consistent giving µB/T = 0.26 ± 0.03
where µB = 45 MeV and T = 170 MeV. This com-
pares to µB/T = 1.58 ± 0.04 at √sNN = 17 GeV where
µB = 266 MeV and T = 168 MeV [11]. We also note
that the flatness of the Λ/Λ and K+/K− ratios in Figure
2 suggests that the transverse momentum distributions
of the particles and their anti-particles are very similar.
The matching pT distributions are especially interesting
for the Λ and Λ, since there may be different produc-
tion mechanisms. The Λ are believed to have component
due to associated production (e.g. pp → pΛK) by the
incoming baryons.

In summary, we have reported strange anti-particle
to particle ratios measured by the STAR experiment at
mid-rapidity in the 11% most central Au+Au collisions
at √sNN = 130 GeV. The ratios indicate that a frac-
tion of the net-baryon number from the initial system is
present in the excess of hyperons over anti-hyperons at
mid-rapidity. The ratios are consistent with simple quark
counting models and with a statistical description of par-
ticle production which is governed by a common baryon
chemical potential and chemical freeze-out temperature.
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